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Abstract

This paper presents numerical study of thermal instability in mixed convection flow over horizontal and inclined
plates. The criterion on the position marking on the onset of longitudinal vortices is defined in the present paper. The
results show that the onset position characterized by the Grashof number depends on the Prandtl number, wave
number, and the inclined angle ¢ from the horizontal. The flow is found to become more stable to the vortex mode of
instability as the value of inclined angle increases, owing to a decrease in buoyancy force in the normal direction.
However, the Prandtl number has a destabilizing effect on the flow. The results of the present numerical prediction
show reasonable agreement with the experimental data in the literature. © 2002 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

The problem of the thermal instability in a laminar
mixed convection flow over horizontal and inclined
plates has received attention in the heat transfer litera-
ture. The understanding of thermal and flow charac-
teristics in buoyancy force driven vortex flow is
important in the design of compact heat exchanger [1],
cooling of microelectric equipment [2], and chemical
vapor process [3]. It is advantageous to suppress the
vortices so as to achieve uniform deposition in chemical
vapor deposition processes. In contrast, it is desirable to
enhance the vortices so as to induce earlier transition to
turbulence and increase heat transfer from the surface in
surface cooling.

There is a large body of literature on the thermal
instability in mixed convection flow over horizontal and
inclined plates (e.g., [4-6], etc.). However, quantitative
agreement between theory and experiment for the onset
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of vortex instability of the flow under consideration is
still unsatisfactory. The discrepancy between the theo-
retical critical values of Grashof number and those ex-
perimental data were one to two orders in the literature.
By reviewing the criteria of the onset of the longitudinal
vortices in boundary layer and channel flows, the ex-
perimental and numerical methods employed in the lit-
erature for determining the onset of longitudinal vortices
were summarized in [7].

The attempt of this paper is to present numerical
experiment for the onset and subsequent linear devel-
opment of longitudinal vortices in mixed convection
flow over horizontal and inclined plates. The experi-
mental criteria proposed by Hwang and Lin [7] for the
onset of longitudinal vortices were employed in the
present study. The governing parameters on the onset of
longitudinal vortices are the Prandtl number, the wave
number «, the inclined angle ¢ from the horizontal, and
the Grashof number. In the computation, the Prandtl
number is 0.7 (for air) and 7.0 (for water), the inclined
angle from the horizontal ¢ = 0°, 5°, 10°, 15°, 20°, 30°,
45°, 60°, and 70°, the magnitudes of imposed initial
disturbance temperature ° =107, and the flat plate
length parameter Gr; /Re)’> = 500.

0017-9310/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
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Nomenclature

a dimensional wave number, o’ = 21/
(1/m)

a dimensionless wave number,
a=dL/Re)?

F velocity, pressure or temperature
function

f reduced stream function,
Y/ (XU

Gry local Grashof number,
Gry = (gB(T, — To)X°) /¥

h local heat transfer coefficient
(W/(m2/K "))

Nuy local Nusselt number, 72X /k

r,p dimensional and dimensionless pressure,
P = pULp/Re;

Pr Prandtl number, v/a

Rey local Reynolds number, Rey = U, X /v

T temperature (K)

tt dimensional and dimensionless
perturbation temperature, ¢ = (7,, — 7o)t
(K)

£ initial constant perturbation temperature
at x = 0 (K)

U,V,W dimensional velocity components (m/s)

u,v,w dimensionless perturbation velocity
components

u',v',w  perturbation velocity components
(m/s)

X, Y. Z Cartesian coordinates (m)
X, 0,z dimensionless Cartesian coordinates as
defined in (14)

Greek letters

o thermal diffusivity of fluid (m?/s)
p coeflicient of thermal expansion
(1/K)
boundary layer thickness (m)
n similarity variable, Y (U, /vX)"* = y/\/x
0, dimensionless basic temperature,
(T - TOC)/(TW - TOO)
A wavelength in Z-direction (m)
v kinematic viscosity of fluid (m?/s)
¢ vorticity function in X-direction defined in
(15)
W stream function (m?/s)
Superscripts
- dimensionless quantities
* onset position

! disturbance quantity or derivative with

respect to 7

Subscripts

b basic flow quantity

L quantity based on the plate length
14 perturbation quantity

w wall condition

X local coordinate

00 free stream condition

2. Theoretical analysis

Consider a laminar mixed convection flow over
horizontal and inclined heated plates with a free
stream velocity U,, as shown in Fig. 1. The acute
angle of inclination from the horizontal is ¢. The
physical Cartesian coordinates are chosen such that X
measures the streamwise distance from the leading
edge of the plate, Y is the distance normal to the plate,

Fig. 1. Physical configuration and coordinate system.

and Z is in the transverse direction. The streamwise
and normal velocity components are U, and V. The
governing boundary layer equations for constant-
property fluids under the Boussinesq approximation
can be written as

w, 0
PR
= vaggugﬁ cos ¢% /Yw(Tb —T.)dy
+ gB(T, — T,) sin ¢, (2)
TRy ®)

where T, is the surface temperature, and 7, is the free-
stream temperature.

Next, one introduces the following dimensionless
variables and parameters:
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X = Lx,
Y =LRe;'?y,
Ub = Uooﬁa
“1/25

0, :u7

T, — T
n=Y(Ux/vX)"?,
S =/ (XU,

where f(X,n) is the reduced stream function. The basic
flow equations (1)-(3) transformed from (X,Y) into
(x,n) plane are:

d of’
f///_._(f_"_xf)f_xf/ai
X

G}’L . G}”L
= ———x0, sin ¢ ——5/x
Rej Rei/2

1 [ 1 > 00,
X|:§~/n Hbdn+§n9b+x/v adn}cosq&,

()
( =f+x f)PrO Prf’%:o. (6)
Ox
The boundary conditions are as follows:
f(x,0) = f'(x,0) = 0p(x,0) = 1 =0, ™)

£'(x,00) = 1 = 0, (x,00) = 0.

In Egs. (5)-(7), the primes denote partial derivatives
with respect to n and Pr is the Prandtl number.

2.1. Perturbation equations

In the region near or upstream of the onset position
x*, the disturbances of longitudinal vortex type are small
and the nonlinear terms in the momentum and energy
equations may be linearized. Furthermore, in experi-
ments ([5,8-10], etc.), ‘stationary’ longitudinal vortex
rolls have been found periodic with a wavelength A in the
transverse direction Z. Therefore, the disturbances su-
perimposed on the two-dimensional basic flow quanti-
ties can be expressed as
FX,Y,Z) =F(X,Y)+ {(X,Y) exp(id'Z), 8
W(X,Y,Z)=w(X,Y)iexp(id'Z), ®
where F=U,V,P or T, {=u',v,p’ or ¢. The value
a' = 2n/A is the dimensional transverse wave number of
the vortex rolls. By consideration of the vortex-type
perturbation quantities in continuity equation, a differ-
ent expression for W is used.

Substituting Eq. (8) into the continuity, Navier—
Stokes, and energy equations in Cartesian coordinates,
and subtracting the two-dimensional basic flow and

energy equations under the assumptions of Gr; > 1 and
Re; > 1, one can obtain the linearized perturbation
equations:

o' o, ,
a—XJra—YfaW—O, (9)
6 aU/, au ,an
bax T ey ey
= gpt’ sin ¢ + VW, (10)
o' , oV o' aVb
U”a_X+ 6X+Vb6Y+ oY
1oy 2
= gpt cosd)——ﬁﬂ—vv (11)
ow w1,
haldd = 12
UbaX—FVbaY ap +vwWw, (12)
o o 3T, 0T 2y
Uba +VbaY+ w Y Y—ocV (13)

where f8 is coefficient of thermal expansion, and V? =
(9?/0Y?) — a'* is a two-dimensional Laplacian operator.
The perturbation equations are two-dimensional and of
boundary layer flow type.

Next, on the top of Eq. (4), one introduces the fol-
lowing dimensionless variables and parameters:

Z=LRe;'’z,
U = Uyu,
[ W] = UxRe,"*[v wl,
= (Tw - T’x,) ’
UL
P REL P (14)
1/2
r_ ReL/ 4
L b
UsL
Re, = ==
v
T, — Ty )L?
Gr, = 8 = w

and a vorticity function in the axial direction

&= 2—;} —av. (15)

To obtain equation for the vorticity, one may dif-
ferentiate Egs. (11) and (12) by z and y, respectively, and
then eliminate the pressure terms by subtracting one
from another. To derive the equation for v, one may
differentiate Eq. (15) with respect to z. Similarly, the
equation for w can be obtained by differentiating Eq.
(15) by y. It is noted that in the derivation of equations
for v and w, Eq. (15) or continuity equation (9) must be
considered. By using also the similarity variable
n = y/+/x, the perturbation equations in # and x planes
are found:
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2
67”+ (lerxaf)— X , Qu

o\ 2 ox ) oy "o
(azx-l—xi/ 217]”)

= " ——Z%xtsm ¢, (16)
a@_;_i_(%f“gixp)ﬁ%—xf'ﬁ%—azm
=Pr%(z;(f%nu+\/)—cv) + Prux % (17)
(V5 s

_(zy,f”-i-azx—x%)é

=x z/zatcosqb (4\/—( —nf" = nf")

A(r L L) )
222 xa*v = axé — \/_ 2\1/_ g;u 21%2—:7

(19)

Z%V_xazwzﬁg—i—axg—z—k%ang—:- (20)

The set of equations (16)—(20) is a boundary value
problem in #-direction, an initial value problem in x-
direction, and an eigenvalue problem in z-direction. The
appropriate initial condition and boundary conditions
of the perturbations equations are

u=v=w=t=0 aty=0,
w

u=v=w=t=¢(=0 atny=o0, (21)

u=v=w=°¢=¢t—-1"=0 atx=0.

An initial value (Eq. (21)) is set at x = 0. However,
the perturbation equations (16)—(20) are computed at
x > 0. Thus, the singularity point x = 0 is removed. For
simplicity, the initial amplitude function #° is set uni-
form, and the other velocity components u, v, and w are
set zero. However, the magnitudes of the velocities u, v,
and w will be generated in the next x-steps. The mag-
nitude of the initial amplitude function, * = 10~ is used
in the present study.

Egs. (16)—-(20) and boundary conditions (21) in the
x—1 plane are for unknowns u, ¢, &, v, and w with three
fixed values of a, Re;, and Gr;. By giving a series value of
a, the largest amplification of the perturbation quantities
along the x-direction determines the value of critical

wave number a*. One may prove analytically the ho-
mogeneity of L for ¢ = 0° in Egs. (16)—(20) by consid-
ering the dimensionless transformations (14), i.e.,
v NLI/Z’ WNLI/Z, a NL]/Z’ X NL—I’ y NL—I/Z’
z~ L7 Y2 and ¢ ~ L (variables of 5 and f are indepen-
dent of L). In the computation, the selection of Re; and
Gry does not change the local critical Grashof number
(Gry/Rel*)” and the critical wave number (ax'/2)*. This
is also proved by using several values of Re; and Gr; in
computation. The present study, Gr; /Rei/ ? =500 is used
for demonstrating the results.

The local Nusselt number of the basic and perturbed
flows can also be expressed as

Nuy = Nuy + Nu,

_ (hh + hp)X
N k
= —Re)? {eg(x, 0) + o(x.0) } (22)
on |,
or
Nuy 0t(x,0) ,
Ny {1 an |, 0,(x,0) 1,

where 7 is the local heat transfer coeflicient, the sub-
scripts b and p indicate the basic and perturbed flows,
and k is the fluid thermal conductivity. It is noted that
Nuy is based on the thermal boundary condition of
constant wall temperature.

3. Numerical procedure

A finite difference scheme based on the weighting
function [11] with second-order accuracy in both 7 and x
is used. The step-by-step procedure is listed as follows:
1. Assign Pr, Gryg /Rei/ % Re,, and ¢ to obtain the basic

flow and temperature distributions. The values of

Pr are 0.7 (for air) and 7.0 (for water),

GrL/Reg/2 = 500, Re; = 10°, and the values of ¢ are

0°, 5°, 10°, 15°, 20°, 30°, 45°, 60°, and 70°.

2. Assign zero initial values of u, v, w, and ¢, initial tem-
perature at leading edge, 1* = 10~ and various values
of wave number a.

3. Solve Egs. (17)—(19) for u, ¢t and & distributions at the
next x-step. Values of ¢ on boundary are evaluated
with previous iteration data of v and w in the interior
region.

4. Solve Eqgs. (20) and (21) for v and w with the obtained
u and ¢&.

5. Repeat steps (3) and (4), until the perturbation quan-
tities meet the convergence criteria at the streamwise
position:
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where F,-Ef) are the perturbation quantities u, v, w, f,
and ¢ of nodal point (i, ) at the nth number of iter-
ation.

6. Calculate the local Nusselt number of the vortex
flow.

7. Repeat steps (3)-(6) at the next mainstream po-
sition until a desired mainstream position is
reached.

8. The absolute values of perturbation quantities are
growing along the mainstream direction. One can
find the mainstream position marked with x.;, where
the onset criterion Nu,/Nu, = 0.1 is satisfied. Vari-
ous onset positions x.; can be determined for differ-
ent values of wave number a. The minimum x.
denoted by x* is the most probable onset position
and the corresponding wave number is denoted by

a*. The local critical value is (Gry /Rei(/z)* =
(Gry/Re)/*)x*¥> and the local wave number is
a*x*'/? for this computation.

The criterion for determination of the onset of lon-
gitudinal vortices using the technique of heat transfer
measurement in experiments can be explained as fol-
lows:

The experimental and numerical methods employed
in the literature for determining the onset of longitu-
dinal vortices were reviewed by Hwang and Lin [7].
There are several ways to set the onset criteria: velocity
measurement, temperature measurement, heat transfer
measurement, and flow visualization, etc. Although the
onset criteria are different, there are on the same of
order of magnitude in the critical values of parameters,
as pointed by Hwang and Lin [7]. Meanwhile, the onset
criteria by heat transfer measurement (Nu,/Nuy) are
usually used in the experiments ([12-14], etc.). It was
known that heat transfer rate can be increased by in-
troducing vortex flow. The onset position can be de-
termined by comparison of the heat transfer rate
between the measured values of secondary flow and the
basic flow data (6-30% of Nu,/Nu, by Incropera et al.
[12], 15% of Nu,/Nu, by Maughen and Incropera [13],
10% of Nu,/Nu, by Chou and Han [14], etc.). Also
by comparison of the onset criterion between
Nu,/Nu, = 0.2 and Nu,/Nu, =0.1 in the numerical
experiment, the values of onset position x* increases
less than 4%. It is reasonable to set Nu,/Nu, = 0.1 for
the onset criterion of longitudinal vortices in the nu-

merical solution by heat transfer measurement tech-
niques.

Table 1 shows a typical result of perturbation tem-
perature development along the x-direction. The grids
are uniform in both normal and streamwise directions.
Grid sizes of Ax = 0.002 and 0.001, Ay = 0.02 and 0.01
are used to perform the numerical experiment. The re-
sult at x = 0.5 has a largest difference of 0.44%, but the
difference at x < 0.4 is less than 0.44%. The grid sizes of
Ax = 0.002, An = 0.02, and 1., = 10 are used to perform
the numerical experiment. To check the validity of the
linear equations (16)—(20), the order of magnitude of
nonlinear terms of perturbation equations near the onset
position are checked. The calculated data are substituted
into the individual terms of the x-momentum equation.
The order of the nonlinear terms is two orders of mag-
nitude smaller than the order of linearized inertia terms.
Therefore, the linear theory is valid for the estimation of
the onset of longitudinal vortices in a laminar mixed
convection flow over horizontal and inclined heated
plates.

4. Results and discussion

The typical development of the dimensionless per-
turbation amplitudes u, v, w, and ¢ at x = 0.3, 0.35, and
04 for Pr=0.7, Gr/Re)* =500, a* =138, and
¢ = 0° is shown in Fig. 2. The magnitude of v and w
are larger than those of u and ¢ because the scaling
factor Rezl/ ? is included in these quantities. The shapes
of the v and w profiles may be regarded as a vortex
pattern.

Fig. 3 depicts the dimensionless perturbation ampli-
tude functions at x = 0.76, 0.8, and 0.84 with the value
of inclined angle ¢ = 45°. It is seen that the values of
perturbation amplitude functions are decreased with the
stabilizing effect of increased inclined angle ¢. It is also
observed in this figure that the profiles of perturbation
amplitude functions are shrunk to smaller 5 region due
to the angle effect. It is noted that a reversed velocity
profile near free stream region was induced downstream
of the linear development region of longitudinal vorti-
ces.

It is also interesting to study numerically the varia-
tions of local heat transfer rate after onset of longitu-

Table 1

Grid size test for Gry /Re)* = 500, a* = 1.38, P = 0.7, and ¢ = 0°
Ax Ay x=0.1 x=02 x=03 x=04 x=0.5
0.002 0.02 0.01375 0.05848 0.4753 7.227 183.3
0.002 0.01 0.01375 0.05847 0.4751 7.221 183.0
0.001 0.02 0.01375 0.05849 0.4756 7.231 183.8

#These are the maximum values of perturbation temperature 7/0.01 at the specified x position.
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Fig. 2. Development of perturbation amplitude profiles at
specified x positions for Gr,/Rel> =500, a* = 1.38, ¢ = 0°,
and Pr=0.7.

dinal vortices. The perturbation heat transfer rate Nu,
behaves like a cosine function in the Z-direction (i.c.,
Nu o< 0T /0Y o exp(ia’'Z)). Although the mean values of
heat transfer rate in one spanwise wave is zero, the
maximum variation of local heat transfer rate along z-
direction occurred at z=0 and z = 2r/a. The variations
of local Nuy/Nu, along axial direction at z=0 are
shown in Fig. 4. The correlation equation for turbulent
free convection for horizontal plate is also shown for
comparison [15,16], i.e.,

Nuy = 0.13(PrGry)'?

or

Nuy _ 0.13(PrGry)'”

1/3
= =0.39(Gry/Re)?
Nuy — 0.332Pr1/3 Rel/ ( e/ eX) ’

10 [ T T T T
s o—45° 7
6| E
S & -
2 b x=0.84 E
B B < 0.76 3
0 7 L L L L L . u
-0.10 -0.05 0.00 0.05
10 -
8 | =
6 f& =
& F R
4 = =
2 E
o r 3 V
0.0 1.0 2.0
10 : -
8 | =
6 | =
S 4 =
. F E
r x=0.84 ]
) R ok == SO R
-1.0 0.0 1.0 2.0
10 T T E
8 =
6 E
& E
4 E
2 f
I} E — i Il L | =
0.0 0.06 0.1 0.16 t

Fig. 3. Development of perturbation amplitude profiles at
specified x positions for GrL/ReZ/2 =500, a* = 1.38, ¢ =45°,
and Pr=0.7.

where —0,(X,0) = 0.332 at ¢ = 0° and Pr = 0.7 is cho-
sen for reference.

The gradients of the temperature at the wall start to
deviate from the laminar natural convection at down-
stream of x*, due to the secondary longitudinal vortex
flow on the heated plate. The angle effects on the lon-
gitudinal vortices are less pronounced when the values
of inclined angle ¢ increases.

The physical meanings of the critical values of
(Gry/Re}/?)", and the local critical wave number a*x*"
can be interpreted as follows: they may be converted to
Gr;, and d" 6, respectively, by the following transfor-
mations:
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*3 *
o _ 8T —T) ( x \ [ G6n
o T 2 Rel/z - Re}/z )
X X

(a/ér)*_<2n X ) :(axl/Z)"7

a Re)l(/ 2

(24)

where the local boundary layer characteristic thickness
6 = X/Rey*.

The results of the critical Grashof number of Fig. 6
in [7] show good agreement with the previous experi-
mental results for the case of ¢ = 0°. But the discrep-
ancy of the critical wave number exists among Hwang
and Lin [7] and the experimental data. The reason is due
to different experimental conditions are set and ex-
plained as follows:

By eliminating the boundary layer thickness ¢ be-
tween the parameter Gr,;, and the wave number a'0, of
Eq. (24), we may obtain the relation

Gr G\
o (P} a2k o Gry =K(do,)”.
(a,(sr)*fa Rei/z Or
(25)

Eq. (25) indicated that the wavelength of the longitudi-
nal vortices are kept constant in the downstream. The
growth of the vortices with constant wavelength can be
shown by straight lines of gradient 3 on a logarithmic
scale. It is noted that the value of K can be determined
by the assigned Gr; /Rez/ 2 and the obtained critical wave
number a*. For Gr; /Re;”> = 500 and a* = 1.38, K = 190

is calculated.

Moreover, by considering Eq. (25) and keeping
constant Gry,, then 8, oc ' AT~'/**3  one may mod-
ify the data (a'd,)" in experiments by the following
transformations:

’ * (a/ér): ’ *

(@'0r)moa = m (a'0r)exp
;Lexp :Bexp ' ATexp 173
:(zr)(ﬁr) (An)
vexp —2/3 , *
X ( Ve ) ([l 5r)exp (26)
or
1/3
3/2

’ * (GrL /ReL ) exp ar ’ *

(Cl 5f)mod = (a 6T)exp7

(GrL /Re} 2> Gexp
T

where the subscripts mod, r, and exp denote modified,
reference and experimental conditions, respectively. For
example, U, =1 m/fs, L,=1 m, AT,=10 K,
B, =1/293 K™, v, = 1.56 x 107> m?/s (air at 20° and
atmospheric pressure), and

X 7275 VL,

. =0.018 m
a* U,

are set in the present study. Fig. 5 replots the results of
Hwang and Lin [7] and previous experimental data for
the onset of longitudinal vortices in a mixed convection
flow over horizontal and inclined plate for Pr = 0.7. The
experimental data, including two air data, and covering
the range Uy, = 0.1-0.6 m/s AT, = 10-30 K are cor-
related by the theoretical relation Gr; = 190(d',)"” to
within an error of +10%.

10° - =
5 [ .
2 - —
10° | -
5 [ .
“OL‘ i i
LS - -
© o2 THEORY (Pr=0.7) N
1 d=45° —=— Lee et al. [g]
10 = \/{J:OO ——— Present study =
b5 n \/ 4
B EXPERIMENT (air) 0=0° ]
V' Moharreri et al. [9]
2 r O Cheng & Kim [10] 7
1 L T TR I S R B
0.0 1.0 e o 20 3.0
@ O oa

Fig. 5. The relation between the critical values Grj and mod-
ified wave number (@' J;)

mod *
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Table 2
Onset position x* for criterion Nu,/Nu;, = 0.1*

¢ (deg) Pr=0.7 (a* =138) Pr=170 (a" =3.45)
x* Gr, a’" o, x* Gr;, a’ s,
0 0.380 117 0.851 0.182 38.8 1.47
5 0.404 128 0.877 0.186 40.0 1.49
10 0.416 134 0.890 0.192 42.0 1.51
15 0.458 155 0.934 0.202 45.4 1.55
20 0.506 180 0.982 0.216 50.0 1.60
30 0.562 211 1.035 0.236 57.3 1.68
45 0.744 320 1.190 0.296 80.5 1.88
60 1.028 515 1.399 0.416 134 2.23
70 1.880 1289 1.892 0.756 329 3.00

*These values are evaluated by using Gr, /Re;’” = 500 and £ = 104,

5 T T

Theory

2 —a— Lee et al[6]
Present study

ot Pr=0.7

Afr (Pr=07)

A Cheng & Kim [10]

O Moherreri et al. [0]

[0 Abu-Mulaweh et al [5]

Experimental data

Water (Pr=7.0)
V Gilpin et al [8]

1 | | | | | | | | |
o 0
50 100

P

Fig. 6. Critical Grashof number Gr; vs. inclined angle ¢.

The effect of inclined angle ¢ on the critical Grashof
number Gr;, is listed in Table 2 and shown in Fig. 6. It is
observed from the data that an increase in the inclined
angle ¢ increases the value of critical Grashof number
Gr;,. The flow is more stable due to a decrease in
buoyancy force in the normal direction. The critical
Grashof number predicted by the previous study [6] was
two orders of magnitude lower than the experimental
data, However, the results of the present study show
reasonable agreement with the previous experimental
data [5,8-10]. It is also found that the Prandtl number
has a destabilizing effect on the flow and the critical
values of Grashof number decrease with an increase in
the Prandtl number.

5. Conclusions

1. The effect of inclined angle from the horizontal on the
stabilization of the thermal instability in mixed con-

vection boundary layers is studied numerically by us-
ing heat transfer rate onset criterion and a linear
instability model.

2. An increase in the inclined angle ¢ increases the value
of critical Grashof number Gr; . The flow is more sta-
ble due to a decrease in buoyancy force in the normal
direction. The effects of inclined angle on the Nusselt
number are less pronounced when the values of in-
clined angle ¢ increases.

3. The Prandtl number has a destabilizing effect on the
flow and the critical values of Grashof number de-
crease with an increase in the Prandtl number. The
results of the present study show reasonable agree-
ment with the previous experimental data.
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