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Abstract

This paper presents numerical study of thermal instability in mixed convection flow over horizontal and inclined

plates. The criterion on the position marking on the onset of longitudinal vortices is defined in the present paper. The

results show that the onset position characterized by the Grashof number depends on the Prandtl number, wave

number, and the inclined angle / from the horizontal. The flow is found to become more stable to the vortex mode of

instability as the value of inclined angle increases, owing to a decrease in buoyancy force in the normal direction.

However, the Prandtl number has a destabilizing effect on the flow. The results of the present numerical prediction

show reasonable agreement with the experimental data in the literature. � 2002 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

The problem of the thermal instability in a laminar

mixed convection flow over horizontal and inclined

plates has received attention in the heat transfer litera-

ture. The understanding of thermal and flow charac-

teristics in buoyancy force driven vortex flow is

important in the design of compact heat exchanger [1],

cooling of microelectric equipment [2], and chemical

vapor process [3]. It is advantageous to suppress the

vortices so as to achieve uniform deposition in chemical

vapor deposition processes. In contrast, it is desirable to

enhance the vortices so as to induce earlier transition to

turbulence and increase heat transfer from the surface in

surface cooling.

There is a large body of literature on the thermal

instability in mixed convection flow over horizontal and

inclined plates (e.g., [4–6], etc.). However, quantitative

agreement between theory and experiment for the onset

of vortex instability of the flow under consideration is

still unsatisfactory. The discrepancy between the theo-

retical critical values of Grashof number and those ex-

perimental data were one to two orders in the literature.

By reviewing the criteria of the onset of the longitudinal

vortices in boundary layer and channel flows, the ex-

perimental and numerical methods employed in the lit-

erature for determining the onset of longitudinal vortices

were summarized in [7].

The attempt of this paper is to present numerical

experiment for the onset and subsequent linear devel-

opment of longitudinal vortices in mixed convection

flow over horizontal and inclined plates. The experi-

mental criteria proposed by Hwang and Lin [7] for the

onset of longitudinal vortices were employed in the

present study. The governing parameters on the onset of

longitudinal vortices are the Prandtl number, the wave

number a, the inclined angle / from the horizontal, and

the Grashof number. In the computation, the Prandtl

number is 0.7 (for air) and 7.0 (for water), the inclined

angle from the horizontal / ¼ 0�, 5�, 10�, 15�, 20�, 30�,
45�, 60�, and 70�, the magnitudes of imposed initial

disturbance temperature t0 ¼ 10�4, and the flat plate

length parameter GrL=Re3=2L ¼ 500.
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2. Theoretical analysis

Consider a laminar mixed convection flow over

horizontal and inclined heated plates with a free

stream velocity U1, as shown in Fig. 1. The acute

angle of inclination from the horizontal is /. The
physical Cartesian coordinates are chosen such that X

measures the streamwise distance from the leading

edge of the plate, Y is the distance normal to the plate,

and Z is in the transverse direction. The streamwise

and normal velocity components are Ub and Vb. The

governing boundary layer equations for constant-

property fluids under the Boussinesq approximation

can be written as

oUb

oX
þ oVb

oY
¼ 0; ð1Þ

Ub
oUb

oX
þ Vb

oUb

oY

¼ m
o2Ub

oY 2
þ gb cos /

o

oX

Z 1

Y
ðTb � T1Þ dY

þ gbðTb � T1Þ sin /; ð2Þ

Ub
oTb

oX
þ Vb

oTb

oY
¼ a

o2Tb

oY 2
; ð3Þ

where Tw is the surface temperature, and T1 is the free-

stream temperature.

Next, one introduces the following dimensionless

variables and parameters:

Nomenclature

a0 dimensional wave number, a0 ¼ 2p=k
(1/m)

a dimensionless wave number,

a ¼ a0L=Re1=2L

F velocity, pressure or temperature

function

f reduced stream function,

w=ðmXU1Þ1=2
GrX local Grashof number,

GrX ¼ ðgbðTw � T1ÞX 3Þ=m2
h local heat transfer coefficient

ðW=ðm2=K�1ÞÞ
NuX local Nusselt number, hX=k
p0; p dimensional and dimensionless pressure,

p0 ¼ qU 2
1p=ReL

Pr Prandtl number, m=a
ReX local Reynolds number, ReX ¼ U1X=m
T temperature (K)

t0; t dimensional and dimensionless

perturbation temperature, t0 ¼ ðTw � T1Þt
(K)

t0 initial constant perturbation temperature

at x ¼ 0 (K)

U ; V ;W dimensional velocity components (m/s)

u; v;w dimensionless perturbation velocity

components

u0; v0;w0 perturbation velocity components

(m/s)

X ; Y ; Z Cartesian coordinates (m)

x; y; z dimensionless Cartesian coordinates as

defined in (14)

Greek letters

a thermal diffusivity of fluid (m2=s)
b coefficient of thermal expansion

(1/K)

d boundary layer thickness (m)

g similarity variable, Y ðU1=mX Þ1=2 ¼ y=
ffiffiffi
x

p

hb dimensionless basic temperature,

ðT � T1Þ=ðTw � T1Þ
k wavelength in Z-direction (m)

m kinematic viscosity of fluid (m2=s)
n vorticity function in X-direction defined in

(15)

w stream function (m2=s)

Superscripts
– dimensionless quantities
	 onset position
0 disturbance quantity or derivative with

respect to g

Subscripts

b basic flow quantity

L quantity based on the plate length

p perturbation quantity

w wall condition

X local coordinate

1 free stream condition

Fig. 1. Physical configuration and coordinate system.
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X ¼ Lx;

Y ¼ LRe�1=2L y;

Ub ¼ U1�uu;

Vb ¼ U1Re�1=2L �vv;

hb ¼
Tb � T1

Tw � T1
;

g ¼ Y ðU1=mX Þ1=2;

f ðX ; gÞ ¼ w=ðmXU1Þ1=2;

ð4Þ

where f ðX ; gÞ is the reduced stream function. The basic

flow equations (1)–(3) transformed from ðX ; Y Þ into

ðx; gÞ plane are:

f 000 þ 1

2
f

�
þ x

of
ox

�
f 00 � xf 0 of

0

ox

¼ �GrL
Re2L

xhb sin / � GrL
Re5=2L

ffiffiffi
x

p


 1

2

Z 1

g
hb dg

�
þ 1

2
ghb þ x

Z 1

g

ohb

ox
dg

�
cos /;

ð5Þ

h00
b þ

1

2
f

�
þ x

of
ox

�
Prh0

b � xPr f 0 oh
0
b

ox
¼ 0: ð6Þ

The boundary conditions are as follows:

f ðx; 0Þ ¼ f 0ðx; 0Þ ¼ hbðx; 0Þ � 1 ¼ 0;

f 0ðx;1Þ � 1 ¼ hbðx;1Þ ¼ 0:
ð7Þ

In Eqs. (5)–(7), the primes denote partial derivatives

with respect to g and Pr is the Prandtl number.

2.1. Perturbation equations

In the region near or upstream of the onset position

x	, the disturbances of longitudinal vortex type are small
and the nonlinear terms in the momentum and energy

equations may be linearized. Furthermore, in experi-

ments ([5,8–10], etc.), ‘stationary’ longitudinal vortex

rolls have been found periodic with a wavelength k in the
transverse direction Z. Therefore, the disturbances su-

perimposed on the two-dimensional basic flow quanti-

ties can be expressed as

F ðX ; Y ; ZÞ ¼ FbðX ; Y Þ þ fðX ; Y Þ expðia0ZÞ;
W ðX ; Y ; ZÞ ¼ w0ðX ; Y Þ i expðia0ZÞ;

ð8Þ

where F ¼ U ; V ; P or T, f ¼ u0; v0; p0 or t0. The value
a0 ¼ 2p=k is the dimensional transverse wave number of
the vortex rolls. By consideration of the vortex-type

perturbation quantities in continuity equation, a differ-

ent expression for W is used.

Substituting Eq. (8) into the continuity, Navier–

Stokes, and energy equations in Cartesian coordinates,

and subtracting the two-dimensional basic flow and

energy equations under the assumptions of GrL � 1 and

ReL � 1, one can obtain the linearized perturbation

equations:

ou0

oX
þ ov0

oY
� a0w0 ¼ 0; ð9Þ

Ub
ou0

oX
þ u0

oUb

oX
þ Vb

ou0

oY
þ v0

oUb

oY
¼ gbt0 sin / þ mr2u0; ð10Þ

Ub
ov0

oX
þ u0

oVb

oX
þ Vb

ov0

oY
þ v0

oVb

oY

¼ gbt0 cos / � 1

q
op0

oY
þ mr2v0; ð11Þ

Ub
ow0

oX
þ Vb

ow0

oY
¼ � 1

q
a0p0 þ mr2w0; ð12Þ

Ub
ot0

oX
þ Vb

ot0

oY
þ u0

oTb

oX
þ v0

oTb

oY
¼ ar2t0; ð13Þ

where b is coefficient of thermal expansion, and r2 ¼
ðo2=oY 2Þ � a02 is a two-dimensional Laplacian operator.
The perturbation equations are two-dimensional and of

boundary layer flow type.

Next, on the top of Eq. (4), one introduces the fol-

lowing dimensionless variables and parameters:

Z ¼ LRe�1=2L z;

u0 ¼ U1u;

½v0 w0� ¼ U1Re�1=2L ½v w�;
t0 ¼ ðTw � T1Þt;

p0 ¼ qU 2
1

ReL
p;

a0 ¼ Re1=2L

L
a;

ReL ¼ U1L
m

;

GrL ¼ gbðTw � T1ÞL3
m2

;

ð14Þ

and a vorticity function in the axial direction

n ¼ ow
oy

� av: ð15Þ

To obtain equation for the vorticity, one may dif-

ferentiate Eqs. (11) and (12) by z and y, respectively, and

then eliminate the pressure terms by subtracting one

from another. To derive the equation for v, one may
differentiate Eq. (15) with respect to z. Similarly, the

equation for w can be obtained by differentiating Eq.

(15) by y. It is noted that in the derivation of equations

for v and w, Eq. (15) or continuity equation (9) must be
considered. By using also the similarity variable

g ¼ y=
ffiffiffi
x

p
, the perturbation equations in g and x planes

are found:
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o2u
og2

þ 1

2
f

�
þ x

of
ox

�
ou
og

� xf 0 ou
ox

� a2x
�

þ x
of 0

ox
� 1

2
gf 00
�
u

¼ f 00 ffiffiffixp
v � GrL

Re2L
xt sin /; ð16Þ

o2t
og2

þ 1

2
f

�
þ x

of
ox

�
Pr

ot
og

� xf 0 Pr
ot
ox

� a2xt

¼ Pr
ohb

og

�
� 1

2
gu þ

ffiffiffi
x

p
v
�
þ Prux

ohb

ox
; ð17Þ

o2n
og2

þ 1

2
f

�
þ x

of
ox

�
on
og

� xf 0 on
ox

� 1

2
gf 00

�
þ a2x � x

of 0

ox

�
n

¼ x
GrL
Re3=2L

at cos / � au
1

4
ffiffiffi
x

p f
��

� gf 0 � g2f 00�

þ
ffiffiffi
x

p
g
of 0

ox

�
� of

ox

�
� x3=2

o2f
ox2

�

þ
ffiffiffi
x

p
f 00 ow

ox

�
� g
2x

ow
og

�
; ð18Þ

o2v
og2

� xa2v ¼ axn �
ffiffiffi
x

p o2u
oxog

þ 1

2
ffiffiffi
x

p g
o2u
og2

þ 1

2
ffiffiffi
x

p ou
og

;

ð19Þ

o2w
og2

� xa2w ¼
ffiffiffi
x

p on
og

� ax
ou
ox

þ 1

2
ag

ou
og

: ð20Þ

The set of equations (16)–(20) is a boundary value

problem in g-direction, an initial value problem in x-

direction, and an eigenvalue problem in z-direction. The

appropriate initial condition and boundary conditions

of the perturbations equations are

u ¼ v ¼ w ¼ t ¼ 0 at g ¼ 0;

u ¼ v ¼ w ¼ t ¼ n ¼ 0 at g ¼ 1;

u ¼ v ¼ w ¼ n ¼ t � t0 ¼ 0 at x ¼ 0:

ð21Þ

An initial value (Eq. (21)) is set at x ¼ 0. However,

the perturbation equations (16)–(20) are computed at

x > 0. Thus, the singularity point x ¼ 0 is removed. For

simplicity, the initial amplitude function t0 is set uni-
form, and the other velocity components u, v, and w are

set zero. However, the magnitudes of the velocities u, v,
and w will be generated in the next x-steps. The mag-

nitude of the initial amplitude function, t0 ¼ 10�4 is used

in the present study.

Eqs. (16)–(20) and boundary conditions (21) in the

x–g plane are for unknowns u, t, n, v, and w with three

fixed values of a, ReL, and GrL. By giving a series value of
a, the largest amplification of the perturbation quantities

along the x-direction determines the value of critical

wave number a	. One may prove analytically the ho-
mogeneity of L for / ¼ 0� in Eqs. (16)–(20) by consid-
ering the dimensionless transformations (14), i.e.,

v � L1=2, w � L1=2, a � L1=2, x � L�1, y � L�1=2,

z � L�1=2, and n � L (variables of g and f are indepen-
dent of L). In the computation, the selection of ReL and

GrL does not change the local critical Grashof number
ðGrX=Re3=2X Þ	 and the critical wave number ðax1=2Þ	. This
is also proved by using several values of ReL and GrL in
computation. The present study, GrL=Re3=2L ¼ 500 is used

for demonstrating the results.

The local Nusselt number of the basic and perturbed

flows can also be expressed as

NuX ¼ Nub þ Nup

¼ ðhb þ hpÞX
k

¼ � Re1=2X h0
bðx; 0Þ

�
þ otðx; 0Þ

og

				
w

�
ð22Þ

or

NuX

Nub
¼ 1

�
þ otðx; 0Þ

og

				
W



h0

bðx; 0Þ
�
;

where h is the local heat transfer coefficient, the sub-

scripts b and p indicate the basic and perturbed flows,

and k is the fluid thermal conductivity. It is noted that

NuX is based on the thermal boundary condition of

constant wall temperature.

3. Numerical procedure

A finite difference scheme based on the weighting

function [11] with second-order accuracy in both g and x
is used. The step-by-step procedure is listed as follows:

1. Assign Pr, GrL=Re3=2L , ReL, and / to obtain the basic

flow and temperature distributions. The values of

Pr are 0.7 (for air) and 7.0 (for water),

GrL=Re3=2L ¼ 500, ReL ¼ 105, and the values of / are

0�, 5�, 10�, 15�, 20�, 30�, 45�, 60�, and 70�.
2. Assign zero initial values of u, v, w, and n, initial tem-

perature at leading edge, t0 ¼ 10�4 and various values

of wave number a.

3. Solve Eqs. (17)–(19) for u, t and n distributions at the
next x-step. Values of n on boundary are evaluated
with previous iteration data of v and w in the interior

region.

4. Solve Eqs. (20) and (21) for v and w with the obtained
u and n.

5. Repeat steps (3) and (4), until the perturbation quan-

tities meet the convergence criteria at the streamwise

position:

max
F ðnþ1Þ

i;j

			 			� F ðnÞ
i;j

			 			
F ðnþ1Þ

i;j

0
@

1
A6 10�5;
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where F ðnÞ
i;j are the perturbation quantities u, v, w, t,

and n of nodal point ði; jÞ at the nth number of iter-
ation.

6. Calculate the local Nusselt number of the vortex

flow.

7. Repeat steps (3)–(6) at the next mainstream po-

sition until a desired mainstream position is

reached.

8. The absolute values of perturbation quantities are

growing along the mainstream direction. One can

find the mainstream position marked with xcr, where
the onset criterion Nup=Nub ¼ 0:1 is satisfied. Vari-
ous onset positions xcr can be determined for differ-
ent values of wave number a. The minimum xcr
denoted by x	 is the most probable onset position
and the corresponding wave number is denoted by

a	. The local critical value is ðGrX=Re3=2X Þ	 ¼
ðGrL=Re3=2L Þx	3=2 and the local wave number is

a	x	1=2 for this computation.
The criterion for determination of the onset of lon-

gitudinal vortices using the technique of heat transfer

measurement in experiments can be explained as fol-

lows:

The experimental and numerical methods employed

in the literature for determining the onset of longitu-

dinal vortices were reviewed by Hwang and Lin [7].

There are several ways to set the onset criteria: velocity

measurement, temperature measurement, heat transfer

measurement, and flow visualization, etc. Although the

onset criteria are different, there are on the same of

order of magnitude in the critical values of parameters,

as pointed by Hwang and Lin [7]. Meanwhile, the onset

criteria by heat transfer measurement (Nup=Nub) are

usually used in the experiments ([12–14], etc.). It was

known that heat transfer rate can be increased by in-

troducing vortex flow. The onset position can be de-

termined by comparison of the heat transfer rate

between the measured values of secondary flow and the

basic flow data (6–30% of Nup=Nub by Incropera et al.

[12], 15% of Nup=Nub by Maughen and Incropera [13],

10% of Nup=Nub by Chou and Han [14], etc.). Also

by comparison of the onset criterion between

Nup=Nub ¼ 0:2 and Nup=Nub ¼ 0:1 in the numerical

experiment, the values of onset position x	 increases

less than 4%. It is reasonable to set Nup=Nub ¼ 0:1 for
the onset criterion of longitudinal vortices in the nu-

merical solution by heat transfer measurement tech-

niques.

Table 1 shows a typical result of perturbation tem-

perature development along the x-direction. The grids

are uniform in both normal and streamwise directions.

Grid sizes of Dx ¼ 0:002 and 0.001, Dg ¼ 0:02 and 0.01
are used to perform the numerical experiment. The re-

sult at x ¼ 0:5 has a largest difference of 0.44%, but the
difference at x < 0:4 is less than 0.44%. The grid sizes of
Dx ¼ 0:002, Dg ¼ 0:02, and g1 ¼ 10 are used to perform

the numerical experiment. To check the validity of the

linear equations (16)–(20), the order of magnitude of

nonlinear terms of perturbation equations near the onset

position are checked. The calculated data are substituted

into the individual terms of the x-momentum equation.

The order of the nonlinear terms is two orders of mag-

nitude smaller than the order of linearized inertia terms.

Therefore, the linear theory is valid for the estimation of

the onset of longitudinal vortices in a laminar mixed

convection flow over horizontal and inclined heated

plates.

4. Results and discussion

The typical development of the dimensionless per-

turbation amplitudes u, v, w, and t at x ¼ 0:3, 0.35, and
0.4 for Pr ¼ 0:7, GrL=Re3=2L ¼ 500, a	 ¼ 1:38, and

/ ¼ 0� is shown in Fig. 2. The magnitude of v and w
are larger than those of u and t because the scaling

factor Re�1=2L is included in these quantities. The shapes

of the v and w profiles may be regarded as a vortex

pattern.

Fig. 3 depicts the dimensionless perturbation ampli-

tude functions at x ¼ 0:76, 0.8, and 0.84 with the value
of inclined angle / ¼ 45�. It is seen that the values of
perturbation amplitude functions are decreased with the

stabilizing effect of increased inclined angle /. It is also
observed in this figure that the profiles of perturbation

amplitude functions are shrunk to smaller g region due
to the angle effect. It is noted that a reversed velocity

profile near free stream region was induced downstream

of the linear development region of longitudinal vorti-

ces.

It is also interesting to study numerically the varia-

tions of local heat transfer rate after onset of longitu-

Table 1

Grid size test for GrL=Re3=2L ¼ 500, a	 ¼ 1:38, Pr ¼ 0:7, and / ¼ 0�

Dx Dg x ¼ 0:1 x ¼ 0:2 x ¼ 0:3 x ¼ 0:4 x ¼ 0:5

0.002 0.02 0.01375a 0.05848 0.4753 7.227 183.3

0.002 0.01 0.01375 0.05847 0.4751 7.221 183.0

0.001 0.02 0.01375 0.05849 0.4756 7.231 183.8

a These are the maximum values of perturbation temperature t=0:01 at the specified x position.
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dinal vortices. The perturbation heat transfer rate Nup

behaves like a cosine function in the Z-direction (i.e.,

Nu / oT=oY / expðia0ZÞ). Although the mean values of
heat transfer rate in one spanwise wave is zero, the

maximum variation of local heat transfer rate along z-

direction occurred at z¼ 0 and z ¼ 2p=a. The variations
of local NuX=Nub along axial direction at z ¼ 0 are

shown in Fig. 4. The correlation equation for turbulent

free convection for horizontal plate is also shown for

comparison [15,16], i.e.,

NuX ¼ 0:13ðPrGrX Þ1=3

or

NuX

Nub
¼ 0:13ðPrGrX Þ1=3

0:332Pr1=3Re1=2X

¼ 0:39 GrX=Re3=2X

� �1=3
;

ð23Þ

where �h0
bðX ; 0Þ ¼ 0:332 at / ¼ 0� and Pr ¼ 0:7 is cho-

sen for reference.

The gradients of the temperature at the wall start to

deviate from the laminar natural convection at down-

stream of x	, due to the secondary longitudinal vortex
flow on the heated plate. The angle effects on the lon-

gitudinal vortices are less pronounced when the values

of inclined angle / increases.

The physical meanings of the critical values of

ðGrX=Re3=2X Þ	, and the local critical wave number a	x	
1=2

can be interpreted as follows: they may be converted to

Gr	dr and a0
	
dr, respectively, by the following transfor-

mations:

Fig. 3. Development of perturbation amplitude profiles at

specified x positions for GrL=Re3=2L ¼ 500, a	 ¼ 1:38, / ¼ 45�,
and Pr ¼ 0:7.

Fig. 2. Development of perturbation amplitude profiles at

specified x positions for GrL=Re3=2L ¼ 500, a	 ¼ 1:38, / ¼ 0�,
and Pr ¼ 0:7.
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Gr	dr ¼
gbðTw � T1Þ

m2
X

Re1=2X

 !	3

¼ GrX
Re3=2X

 !	

;

ða0drÞ	 ¼
2p
k

X

Re1=2X

 !	

¼ ax1=2
� �	

;

ð24Þ

where the local boundary layer characteristic thickness

dr ¼ X=Re1=2X .

The results of the critical Grashof number of Fig. 6

in [7] show good agreement with the previous experi-

mental results for the case of / ¼ 0�. But the discrep-
ancy of the critical wave number exists among Hwang

and Lin [7] and the experimental data. The reason is due

to different experimental conditions are set and ex-

plained as follows:

By eliminating the boundary layer thickness d be-

tween the parameter Grdr and the wave number a0dr of
Eq. (24), we may obtain the relation

Gr	dr
ða0drÞ	3

¼ GrL
Re3=2L

 !	,
a	3 ¼ K or Gr	dr ¼ Kða0drÞ	3:

ð25Þ

Eq. (25) indicated that the wavelength of the longitudi-

nal vortices are kept constant in the downstream. The

growth of the vortices with constant wavelength can be

shown by straight lines of gradient 3 on a logarithmic

scale. It is noted that the value of K can be determined

by the assigned GrL=Re3=2L , and the obtained critical wave

number a	. For GrL=Re3=2L ¼ 500 and a	 ¼ 1:38, K ¼ 190

is calculated.

Moreover, by considering Eq. (25) and keeping

constant Grdr , then dr / b�1=3DT�1=3m2=3, one may mod-
ify the data ða0drÞ	 in experiments by the following

transformations:

ða0drÞ	mod ¼
ða0drÞ	r
ða0drÞ	exp

ða0drÞ	exp

¼ kexp
kr

� �
bexp
br

� �1=3 DTexp
DTr

� �1=3


 mexp
mr

� ��2=3

a0dr
� �	

exp

or

ða0drÞ	mod ¼
GrL=Re3=2L

� �
exp

GrL=Re3=2L

� �
r

0
B@

1
CA

1=3

ar
aexp

ða0drÞ	exp;

ð26Þ

where the subscripts mod, r, and exp denote modified,

reference and experimental conditions, respectively. For

example, Ur ¼ 1 m/s, Lr ¼ 1 m, DTr ¼ 10 K,

br ¼ 1=293 K�1, mr ¼ 1:56
 10�5 m2=s (air at 20� and
atmospheric pressure), and

kr ¼
2p
a	

ffiffiffiffiffiffiffiffi
mrLr
Ur

r
¼ 0:018 m

are set in the present study. Fig. 5 replots the results of

Hwang and Lin [7] and previous experimental data for

the onset of longitudinal vortices in a mixed convection

flow over horizontal and inclined plate for Pr ¼ 0:7. The
experimental data, including two air data, and covering

the range Uexp ¼ 0:1–0:6 m/s DTexp ¼ 10–30 K are cor-

related by the theoretical relation Gr	dr ¼ 190ða0drÞ	3 to
within an error of �10%.

Fig. 5. The relation between the critical values Gr	dr and mod-
ified wave number ða0	drÞmod.

Fig. 4. Local Nusselt number ratio NuX=Nub vs. GrX=Re3=2X at

z ¼ 0.
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The effect of inclined angle / on the critical Grashof

number Gr	dr is listed in Table 2 and shown in Fig. 6. It is
observed from the data that an increase in the inclined

angle / increases the value of critical Grashof number

Gr	dr . The flow is more stable due to a decrease in

buoyancy force in the normal direction. The critical

Grashof number predicted by the previous study [6] was

two orders of magnitude lower than the experimental

data, However, the results of the present study show

reasonable agreement with the previous experimental

data [5,8–10]. It is also found that the Prandtl number

has a destabilizing effect on the flow and the critical

values of Grashof number decrease with an increase in

the Prandtl number.

5. Conclusions

1. The effect of inclined angle from the horizontal on the

stabilization of the thermal instability in mixed con-

vection boundary layers is studied numerically by us-

ing heat transfer rate onset criterion and a linear

instability model.

2. An increase in the inclined angle / increases the value

of critical Grashof number Gr	dr . The flow is more sta-
ble due to a decrease in buoyancy force in the normal

direction. The effects of inclined angle on the Nusselt

number are less pronounced when the values of in-

clined angle / increases.

3. The Prandtl number has a destabilizing effect on the

flow and the critical values of Grashof number de-

crease with an increase in the Prandtl number. The

results of the present study show reasonable agree-

ment with the previous experimental data.
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